Megerian JT, Dey S, Melmed RD, Coury DL, Lerner M, Nicholls CJ, Sohl K, Rouhbakhsh R, Narasimhan A, Romain J, Golla S, Shareef S, Ostrovsky A, Shannon J, Kraft C, Liu-Mayo S, Abbas H, Gal-Szabo DE, Wall DP, & Taraman S (2022). Evaluation of an artificial intelligence-based medical device for diagnosis of autism spectrum disorder. NPJ Digital Medicine, 5(1), 57–57. https://doi.org/10.1038/s41746-022-00598-6
Researchers conducted a double-blinded, multi-site, active comparator cohort study to test the accuracy of artificial intelligence software for diagnosing autism spectrum disorder (ASD). The software device collects data about child behavioral features from 3 sources (caregiver questionnaire, analysis of two short 1 minute home videos recorded and uploaded by the child’s caregiver, provider questionnaire). Data are processed using a machine learning algorithm to indicate whether a person is ASD positive, ASD negative, or inconclusive (i.e., inputted data are not sufficient for a predictive output). Researchers evaluated the software in a study with 425 children aged 18-72 months for whom a caregiver or provider had a concern about developmental delay. Researchers compared the software outputs to the clinical standard (diagnosis made by a provider based on DSM-5 criteria). Results demonstrated that data collection with the software device took less time to administer and require less specialty training relative to clinical standard process. For about 33% of the sample, the algorithm output supported accurate diagnoses compared with clinical evaluation. Of the children for whom the software algorithm made a definite evaluation, 98.4% with clinically diagnosed ASD received an ASD positive result and 78.9% without a clinical diagnosis of ASD received an ASD negative result. All children who received a false-positive result (n=15) had a non-ASD developmental condition. Only one child received a false negative result in this study. Overall, this machine learning tool demonstrated high sensitivity and good specificity for diagnosing ASD. The tool can potentially expand the ability to effectively diagnose children with ASD in primary care to facilitate early intervention and more efficient use of specialist resources.